13/06/2023, 17:28

v Business Problem:

As a data analyst for an e-commerce business, your task is to analyze the customer reviews and ratings data to gain insights that can help
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improve customer satisfaction and identify areas for business growth.

Three things the stakeholder would want:

Sentiment Analysis:

The stakeholder would like to understand the overall sentiment of the customer reviews. They want to know whether the majority of the reviews
are positive, negative, or neutral. This analysis will help them gauge customer satisfaction and identify potential areas of improvement.

Product Performance Comparison:

The stakeholder wants to compare the performance of different products based on customer ratings. They are interested in identifying the best-
selling products and determining if there are any specific product categories that consistently receive positive or negative feedback. This
information will help them make data-driven decisions about inventory management and product development.

Customer Segmentation:

The stakeholder is keen on understanding the different types of customers based on their reviews and ratings. They want to segment
customers into groups based on their preferences and sentiments. This segmentation will help in targeted marketing efforts, personalized

recommendations, and improving customer engagement.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns
gmatplotlib inline

import os

import csv

nRowsRead = 30000 # specify 'None' if want to read whole file Womens Clothing E-Commerce Reviews.csv may have more rows in reality, but
we are only loading/previewing the first 1000 rows df = pd.read_csv('/content/Womens Clothing E-Commerce Reviews.csV', delimiter=',, nrows
= nRowsRead) df.dataframeName = 'Womens Clothing E-Commerce Reviews.csv' nRow, nCol = df.shape print(f'There are {nRow} rows and

{nCol} columns')

~ Load the dataset

# Get the current working directory
current_directory = os.getcwd()

# Construct the file path

file path = os.path.join(current directory, "/content/Womens Clothing E-Commerce Reviews.csv")

# Load the CSV file into a DataFrame
df = pd.read_csv(file_path)

# Display the first few rows of the DataFrame
print(df.head())
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Unnamed: 0 Clothing ID Age Title
0 767 33 NaN
1 1080 34 NaN
2 1077 60 Some major design flaws
3 1049 50 My favorite buy!
4 847 47 Flattering shirt

Review Text Rating
Absolutely wonderful - silky and sexy and comf...
Love this dress! it's sooo pretty. i happene...
I had such high hopes for this dress and reall...
I love, love, love this jumpsuit. it's fun, fl...
This shirt is very flattering to all due to th...
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1 4 General Dresses Dresses
2 0 General Dresses Dresses
3 0 General Petite Bottoms Pants
4 6 General Tops Blouses
v EXPLORE THE DATASET
df.head()
Unnamed: Clothing a Titl Revi Text Rati Recommended Positive Divi
V] IDp ge itle eview Tex ating IND Feedback Count
0 0 767 33 NaN Absolutely wonderful - silky and 4 1 0 Initr
sexy and comf...
. - .
1 1 1080 34 NaN Love this dress! it's sooo pretty. i 5 1 4 Ge
happene...
2 P 1077 60 Some major I had such high hopes for this 3 0 0 Ge
design flaws dress and reall...
3 3 1049 50  Myfavoritebuyl | 0V® love, love this jumpsuit. 5 1 0 General |
it's fun, fl...
4 4 847 47 Flattering shirt This shirt is very flattering to all 5 1 6 Ge
due to th...
2
df.shape

(23486, 11)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23486 entries, 0 to 23485
Data columns (total 11 columns):

# Column Non-Null Count Dtype
0 Unnamed: 0 23486 non-null inté64
1 Clothing ID 23486 non-null int64
2 Age 23486 non-null inté64
3 Title 19676 non-null object
4 Review Text 22641 non-null object
5 Rating 23486 non-null int64
6 Recommended IND 23486 non-null int64
7 Positive Feedback Count 23486 non-null int64
8 Division Name 23472 non-null object
9 Department Name 23472 non-null object
10 Class Name 23472 non-null object

dtypes: int64(6), object(5)
memory usage: 2.0+ MB

df.columns

Index ([ 'Unnamed: 0', 'Clothing ID', 'Age', 'Title', 'Review Text', 'Rating',
'Recommended IND', 'Positive Feedback Count', 'Division Name',
'Department Name', 'Class Name'],

dtype='object"')

df .dtypes
Unnamed: 0 int64
Clothing ID int64
Age int64
Title object
Review Text object
Rating inté64
Recommended IND int64
Positive Feedback Count int64
Division Name object
Department Name object
Class Name object

dtype: object

df.describe()
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count
mean
std
min
25%
50%

—7c0/

Unnamed: 0 Clothing ID

23486.000000 23486.000000

11742.500000 918.118709
6779.968547 203.298980

0.000000 0.000000
5871.250000 861.000000
11742.500000 936.000000

47240 7EANNN 41Nn70 nnNNNN

dfl = df.copy()

v~ CLEAN THE DATASET

dfl.isnull().sum()

Unnamed: 0 0
Clothing ID 0
Age 0
Title 3810
Review Text 845
Rating 0
Recommended IND 0
Positive Feedback Count 0
Division Name 14
Department Name 14
Class Name 14
dtype: inté64

Double-click (or enter) to edit
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Age Rating Recommended IND Positive Feedback Count

23486.000000 23486.000000

43.198544 4.196032
12.279544 1.110031
18.000000 1.000000
34.000000 4.000000
41.000000 5.000000

£n ANnNNNN [ a%a%a%a%a%a)

23486.000000 23486.000000
0.822362 2.535936
0.382216 5.702202
0.000000 0.000000
1.000000 0.000000
1.000000 1.000000

4 AnnnNnNN

~ plot a bar of missing values to get a better feel of them.

missing values = dfl.isnull().sum()

missing values.plot(kind = 'bar')
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missing percent = round(dfl.isnull().sum() / len(dfl) * 100, 1)
missing percent.plot(kind = 'bar')
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The percentage of missing values shows the percentage of missing values in each column

import missingno as msno

missingo is a library specifically designed for visualizing and analyzing missing data in datasets. It provides a set of useful visualization
functions to help you understand the distribution and patterns of missing values in your data.

msno.bar (dfl)
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There are missing values in Title, Review Text, Division Name, Department Name, and

7 the Class Name.

dfl.dtypes

Unnamed: 0
Clothing ID
Age

Title

Review Text
Rating
Recommended IND

Positive Feedback Count

Division Name
Department Name
Class Name
dtype: object

dfl['Title'].head()

B w N+ o

int64
int64
int64
object
object
int64
inté64
int64
object
object
object

NaN
NaN

Some major design flaws
My favorite buy!
Flattering shirt

Name: Title, dtype: object

dfl['Title'].value_counts()

Love it!
Beautiful
Love

Love!
Beautiful!

Perfect transition dress
The perfect spring dress!

Super soft but can make you look frumpy

More structured than a cardi
Please make more like this one!

Name: Title, Length:

13993,

dtype:

136
95
88
84

[ S S

inté64
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Filling missing values with an empty string (') is important especially when working with text data.

Maintaining Data Structure:

Compatibility with Text-based Operations:

Filling missing values with an empty string allows you to perform various text-based operations without encountering errors.

Preserving Textual Context:

In some cases, the absence of information can still hold some significance within the context of the data. By filling missing values with an
empty string, you explicitly indicate that there is no available text information for those instances, allowing you to preserve the textual context

and ensure that downstream analyses or models can appropriately handle these missing values.

dfl['Title'].fillna('', inplace=True)

dfl['Title'].head()
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Love it !

Love it !

Some major design flaws
My favorite buy!
Flattering shirt

Name: Title, dtype: object

dfl[ 'Review Text'].head()

Absolutely wonderful - silky and sexy and comf...

Love this dress!

I love, love, love this jumpsuit.

0

1 it's sooo pretty.
2 I had such high hopes for this dress and reall...
3

4

it's fun,

i happene...

fl...

This shirt is very flattering to all due to th...
Name: Review Text, dtype: object

dfl[ 'Review Text'].fillna('"',

inplace=True)
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dfl[ 'Review Text'].head()

Absolutely wonderful - silky and sexy and comf...
Love this dress! it's sooo pretty. i happene...
I had such high hopes for this dress and reall...
I love, love, love this jumpsuit. it's fun, fl...
This shirt is very flattering to all due to th...
Name: Review Text, dtype: object

= W N = o

dfl['Division Name'].value_counts()

General 13850
General Petite 8120
Initmates 1502

Name: Division Name, dtype: int64

dfl[ 'Division Name'].replace(np.nan, 'General', inplace = True)

Replacing missing categorical values with the mode is a common approach.
The mode represents the most frequent value in a categorical variable, making it a reasonable choice for filling in missing values.

We are essentially imputing the missing values with the most commonly occurring category in that column. This helps to preserve the
distribution and characteristics of the existing data while filling in the missing information.

dfl[ 'Department Name'].value_counts()

Tops 10468
Dresses 6319
Bottoms 3799
Intimate 1735
Jackets 1032
Trend 119

Name: Department Name, dtype: int64

dfl[ 'Department Name'].head()

0 Intimate
1 Dresses
2 Dresses
3 Bottoms
4 Tops
Name: Department Name, dtype: object

dfl[ 'Department Name'].replace(np.nan, 'Tops', inplace = True)

dfl['Class Name'].value_counts()

Dresses 6319
Knits 4843
Blouses 3097
Sweaters 1428
Pants 1388
Jeans 1147
Fine gauge 1100
skirts 945
Jackets 704
Lounge 691
Swim 350
Outerwear 328
Shorts 317
Sleep 228
Legwear 165
Intimates 154
Layering 146
Trend 119
Casual bottoms 2
Chemises 1

Name: Class Name, dtype: inté64

dfl['Class Name'].replace(np.nan, 'Dresses', inplace = True)

dfl.isnull().sum()

Unnamed: 0 0
Clothing ID 0
Age 0
Title 0
Review Text 0
Rating 0

https://colab.research.google.com/drive/19bjlkfe ASUPuRMIo3ZgX-St5crQFBNMg#scrollTo=DHs2LEylEaEU &printMode=true
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Recommended IND
Positive Feedback Count
Division Name
Department Name

Class Name

dtype: inté64

o O o oo

~ Drop any unnecesary columns

dfl.drop('Unnamed: 0', axis= 1, inplace = True)

dfl.duplicated().sum()

21

Duplicates sometimes represent multiple occurrences of the same value and should not be dropped.

These duplicates contribute to the overall result of the aggregation operation

~ Univariate data analysis

numerical df = dfl.select_dtypes(include = [ 'number'])
numerical_df.head()

Unnamed: 0 Clothing ID Age Rating Recommended IND Positive Feedback Count /.

0 0 767 33 4 1 0
1 1 1080 34 5 1 4
2 2 1077 60 3 0 0
3 3 1049 50 5 1 0
4 4 847 47 5 1 6

Creating histograms allows us to explore and visualize data in a systematic and automated manner.

It helps in uncovering patterns, detecting anomalies, and drawing meaningful conclusions about the numerical data. Histograms provide a
foundation for further analysis and decision-making based on the distribution of values in the dataset.

By creating numerical_df, we can easily make histograms for all our numerical columns in our dataset.

for column in numerical_df.columns:
plt.hist(numerical_df[column], bins = 10)
plt.xlabel(column)
plt.ylabel('Frequency')
plt.title(f'Histogram of {column}')
plt.show()
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categorical_df = dfl.select_dtypes(exclude = [ 'number'])

categorical_df.head()

Title Review Text Division Name Department Name Class Name ?’:
0 Absolutely wonderful - silky and sexy and comf... Initmates Intimate Intimates
1 Love this dress! it's sooo pretty. i happene... General Dresses Dresses
2 Some major design flaws I had such high hopes for this dress and reall... General Dresses Dresses
3 My favorite buy! I love, love, love this jumpsuit. it's fun, fl... General Petite Bottoms Pants
4 Flattering shirt This shirt is very flattering to all due to th... General Tops Blouses
| |

To understand our columns more, we create bar charts to understand the composition and prominence of different categorical columns,
identifying the most common or dominant in each column, and detecting any imbalances or discrepancies in the data.

Overall, this visualization aids in exploring and understanding categorical data in an intuitive way.

..... | LI
dfl['Division Name'].value_counts().plot(kind = 'bar', figsize = (12,6))
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dfl[ 'Department Name'].value_counts().plot(kind = 'bar', figsize = (12,6))
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<Axes: >
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dfl['Class Name'].value_counts().plot(kind = 'bar', figsize = (12,6))
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~ Bivariate analysis

It refers to the analysis of the relationship between two variables.

It involves examining the association, correlation, or dependencies between two variables to gain insights into their relationship and understand

how they interact with each other.

corrs =dfl.corr()
corrs

<ipython-input-97-90012e75b726>:1: FutureWarning:

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select

Clothing ID Age Rating Recommended IND Positive Feedback Count

Clothing ID 1.000000 0.012433 -0.008202 -0.005699 0.042977

Age 0.012433 1.000000 0.037346 0.040389 0.040223

Rating -0.008202 0.037346 1.000000 0.792294 -0.055445
Recommended IND -0.005699 0.040389 0.792294 1.000000 -0.063094
Positive Feedback Count 0.042977 0.040223 -0.055445 -0.063094 1.000000

import plotly.express as px

# Create the scatter plot
fig = px.scatter(dfl, x='Age', y='Positive Feedback Count',
title="Positive Feedback vs. Age",
labels={'Positive Feedback Count': 'Positive Feedback',
'Age': 'Age'})
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fig.show()

Positive Feedback vs. Age
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Double-click (or enter) to edit

# Create age groups

age_bins = [0, 20, 30, 40, 50, 60, 70, 80, 100] # Define the age group boundaries

age_labels = ['0-20', '21-30', '31-40', '41-50', '51-60', '61-70', '71-80', '81+'] # Labels for the age groups
dfl['Age Group'] = pd.cut(dfl['Age'], bins=age_bins, labels=age_labels, right=False) # Categorize ages into groups

# Create the scatter plot with age groups
fig = px.scatter(dfl, x='Age Group', y='Positive Feedback Count',
title="Positive Feedback Count vs. Age Group",
labels={'Positive Feedback Count': 'Positive Feedback',
'Age Group': 'Age Group'})

fig.show()
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The scatter plot with age groups allows us to compare the positive feedback count across different age categories and gain insights into
potential trends or variations within the dataset.

1. There are more positive ratings from the customers in the Age group 31-40 tend to cluster together and exhibit a higher positive feedback
count, it suggests that age group may generally have a higher satisfaction level or engagement with the clothes.

2. Possible Outliers present among those in the age 71- 80 who gave a positiv feedback.

~ :

# Calculate the average positive feedback count per clothing ID
avg_feedback _per clothing = dfl.groupby('Clothing ID')['Positive Feedback Count'].mean().reset_index()

# Create the bar plot
fig = px.bar(avg_feedback per clothing, x='Clothing ID', y='Positive Feedback Count',
title='Average Positive Feedback Count per Clothing ID',
labels={'Positive Feedback Count': 'Average Positive Feedback Count',
'Clothing ID': 'Clothing ID'})

fig.show()

Average Positive Feedback Count per Clothing ID
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It provides a clear visual representation of the average positive feedback count for each clothing item, making it easier to identify which
clothing items receive higher or lower feedback counts.

df1[df1['Clothing ID'] == 94]
Clothing a il Revi Text Rati Recommended Positive Division
iDp ge iele eview tex ating IND Feedback Count Name
15903 04 38 Great idea, poor | absolutely loved the idea of 3 0 32 Initmates
execution an elongated ho...
+o'
P

# Calculate the highest positive feedback count per clothing ID
max_feedback_per_ clothing = dfl.groupby('Clothing ID')['Positive Feedback Count'].max().reset_index()

# Create the bar plot
fig = px.bar(max_feedback per clothing, x='Clothing ID', y='Positive Feedback Count',
title='Highest Positive Feedback Count per Clothing ID',
labels={'Positive Feedback Count': 'Highest Positive Feedback Count',
'Clothing ID': 'Clothing ID'})

fig.show()
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Highest Positive Feedback Count

Women clothes.ipynb - Colaboratory

Highest Positive Feedback Count per Clothing ID
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By plotting the highest positive feedback count per clothing ID, you can visualize and compare which clothing items received the most positive

feedback
df1[dfl['Clothing ID'] == 1092]
Clothi;g Age Title
1935 1092 50 Just right
1940 1092 50 Wanted to like it
1943 1092 44
1949 1002 31 Love
1962 1002 44  Anotherhuge
dress...
21366 1002 32 For straight
figures
21380 1092 67 Lovely color
but...
21383 1092 30 ';“’I;’:atgj
21390 1002 51 Wesnta goofg
21396 1092 32

220 rows x 11 columns

+ot

/0

Review Text Rating

| ordered this in a size s, my
usual size and ...

| thought this dress was very
cute on the mode...

Ugh. i was so excited to get this
dress and f...

| just love this dress! the color,
the quality...

Okay, i get the idea of the loose
swing dresse...

This sweater dress was
incredibly soft, and i ...

This sweater dress color is great
and texture ...

| absolutely love this sweater. it
isagreat ...

| really thought from the picture
that the dre...

Really cute dress for work. fits
exactly asi ...

dfl.groupby('Division Name')[ 'Rating'].median().plot(kind='bar"')

plt.show()
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5 |
2l
5
2
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We identified the divisions that have a consistently high or low median rating, indicating customer satisfaction or dissatisfaction within those
divisions.

We are thus able to insights into potential variations in product performance, customer experiences, or division-specific factors that may impact
customer ratings.

top_10_ratings = dfl.groupby([ 'Department Name', 'Age'])['Rating'].median().nlargest(10)
top_10_ratings.plot(kind='bar', figsize = (12,6))
plt.show()

5 -
2l
5
5
L
0

Department Name,Age

(Bottoms, 20)
(Bottoms, 21)
(Bottoms, 22)
(Bottoms, 23)
(Bottoms, 24)
(Bottoms, 25)
(Bottoms, 26)
(Bottoms, 27)
(Bottoms, 28)
(Bottoms, 29)

The resulting bar plot shows the top 10 median ratings for each combination of 'Department Name' and 'Age’

This plot hels us identify the departments and age groups with the highest median ratings, providing insights into customer satisfaction within
different departments and age ranges.

dfl['Class Name'].value_counts()

Dresses 6333
Knits 4843
Blouses 3097
Sweaters 1428
Pants 1388
Jeans 1147
Fine gauge 1100
skirts 945
Jackets 704
Lounge 691
Swim 350
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Outerwear 328
Shorts 317
Sleep 228
Legwear 165
Intimates 154
Layering 146
Trend 119
Casual bottoms 2
Chemises 1

Name: Class Name, dtype: int64

Bar plot with error bars:

If you want to compare the average or mean value of a continuous variable across different categories, a bar plot with error bars can be
effective. Error bars indicate the variability or confidence intervals.

plt.figure(figsize = (12,6))
dfl.groupby('Class Name')['Positive Feedback Count'].mean().plot(kind='bar', figsize = (15,6), yerr=dfl.groupby('Class Name')[
plt.show()
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Adding error bars: The yerr parameter is set to the standard deviation of the positive feedback counts for each class name. This adds error bars
to the bar plot, indicating the variability in the positive feedback counts within each class name category.

The resulting bar plot thus show the average positive feedback counts for each class name category, with error bars indicating the standard
deviation.

This plot provides a visual representation of the average positive feedback received for different class names, allowing for comparisons and
insights into customer sentiments towards different clothing classes.

The error bars provide an understanding of the variability or spread of positive feedback counts within each class name category.

Interpretation:
The box plot visualizes the distribution of ages for each of the top 10 classes with the highest median age.
Each box represents the age distribution for a specific class, with the median value indicated by the horizontal line inside the box.

The vertical lines (whiskers) extend from the boxes to show the range of age values within 1.5 times the interquartile range (IQR) from the box.
Any points outside the whiskers are considered outliers.

Insights:
The box plot allows you to compare the age distributions among the top 10 classes.
It helps us identify differences in the central tendency and spread of ages across these classes.

We can observe whether there are significant variations in the age ranges or any notable outliers for certain classes.
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# Compute the median age for each class
class_median_age = dfl.groupby('Class Name')[ 'Age'].median().sort values(ascending=False)

# Select the top 10 classes
top_10_classes = class_median_age.head(10).index.tolist()

# Filter the dataframe to include only the rows corresponding to the top 10 classes
df_top_10 = dfl1[dfl['Class Name'].isin(top_10_classes)]

# Create the violin plot

sns.violinplot(x='Class Name', y='Age', data=df_ top_ 10, order=top_10_classes)
plt.xlabel('Class Name')

plt.ylabel('Age')

plt.title('Distribution of Age across Top 10 Classes')
plt.xticks(rotation=45)

plt.tight_layout()

plt.show()
Distribution of Age across Top 10 Classes
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The resulting violin plot shows us the distribution of ages for the top 10 classes, allowing you to compare the spread, central tendency, and
skewness of the age distribution across different classes.

Shape of Violin Plots: Each violin plot represents the distribution of ages for a specific class. The width of the violin indicates the density of
data points at different ages. Wider sections indicate a higher concentration of data, while narrower sections indicate lower density.

Median Line: Inside each violin, a white dot represents the median age for the corresponding class. It gives an estimate of the central tendency
or the typical age within that class. Comparing the positions of the median lines among different classes can provide insights into the relative
ages across the top 10 classes.

Interquartile Range (IQR): The box inside the violin represents the interquartile range (IQR) of the age distribution for each class. It spans the
middle 50% of the data, with the lower edge indicating the 25th percentile (first quartile) and the upper edge indicating the 75th percentile (third
quartile). The IQR provides information about the spread and variability of ages within each class.

Density Estimation: The thickness of the violin plot at different age values represents the estimated kernel density of the age distribution.
Thicker sections indicate higher density or a higher concentration of ages in that region. This helps visualize the probability density of different
age ranges within each class.

Double-click (or enter) to edit

sns.barplot (x='Department Name', y='Positive Feedback Count', data=dfl)
plt.show()
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The resulting bar chart displays the distribution of the 'Positive Feedback Count' variable across different departments, allowing us to compare

and visualize the values for each category.

Trends and Dresses department receive the most positive feedback counts

dfl.head()

Clothing . . . Recommended
D Age Title Review Text Rating IND
0 767 33 Love it! Absolutely wonderful - silky and sexy 4 1

and comf...

. - .
1 1080 34 Loveit! Love this dress! it's sooo pretty. i 5 1

happene...
5 1077 60 Some major design | had such high hopes for this dress 3 0

flaws and reall...
3 1049 50 My favorite buy! I love, love, love this jumpsuit. it's f:n, 5 1
4 847 47 Flattering shirt This shirt is very flattering to all du;ehto 5 1

2
~ Analysis

import nltk

from nltk.corpus import stopwords
from nltk.sentiment import SentimentIntensityAnalyzer

nltk.download( 'stopwords')
nltk.download('vader_lexicon')

# Remove stopwords, punctuation, and special characters

stop_words =

dfl[ 'Review

Text'] =

dfl[ 'Review Text'].apply(lambda x: '

set (stopwords.words( 'english'))

# Apply sentiment analysis using VADER
sid = SentimentIntensityAnalyzer()

dfl[ 'sentiment_score'] = dfl[ 'Review Text'].apply(lambda x: sid.polarity scores(x)['compound'])

# Classify sentiments based on sentiment score

dfl[ 'sentiment'] =

print(df1l[["’

Review Text',

dfl[ 'sentiment_score'].apply(lambda x:

'positive' if x > 0 else 'negative'

'sentiment']])

[nltk_data] Downloading package stopwords to /root/nltk_data...

[nltk d

ata] Unzipping

corpora/stopwords.zip.

[nltk_data] Downloading package vader_lexicon to /root/nltk data...

w N = o

4
23481
23482
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Love dress!
high hopes dress
love, love, love

SO00

shirt flattering

happy snag dress

Review Text sentiment

Absolutely wonderful - silky sexy comfortable positive
pretty. happened find store, ... positive
really wanted work me. initia... positive
jumpsuit. fun, flirty, fabulo... positive
due adjustable front tie. per... positive
great price! easy slip flatte... positive

reminds maternity clothes. soft, stretchy, shi... positive

if x < 0 else

Positive Feedback
Count

Divis

N

Initm:

Gen

Gen

General Pe

Gen

'.join([word for word in x.split() if word.lower() not in stop_words

'neutral')
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23483 fit well, top see through. never would worked ... positive
23484 bought dress wedding summer, cute. unfortunate... positive
23485 dress lovely platinum feminine fits perfectly,... positive

[23486 rows x 2 columns]

sentiment_counts = dfl['sentiment'].value_counts()

# Plot the sentiment distribution

plt.figure(figsize=(8, 6))
plt.bar(sentiment_counts.index, sentiment_counts.values)
plt.title('Sentiment Distribution')
plt.xlabel('Sentiment')

plt.ylabel('Count')

plt.show()

Sentiment Distribution

20000 4

15000 +

Count

10000 +

5000 A

positive neutral negative
Sentiment

This code is an example of sentiment analysis using the Natural Language Toolkit (NLTK) library in Python.
Sentiment analysis is the process of determining the emotional tone behind a series of text data, in this case, customer reviews.

Let's go through the code step by step:

~ Importing the necessary modules:

nltk: This is the main NLTK library. stopwords: It is a list of common words (like "and," "the," "is," etc.) that are usually removed from text data
because they do not contribute much to the overall meaning.

SentimentintensityAnalyzer:

This is a pre-trained sentiment analysis tool provided by NLTK.

Downloading NLTK resources:

nltk.download('stopwords"): This line downloads a set of stopwords from NLTK, which will be used later to remove these words from the
reviews. nltk.download('vader_lexicon'): This line downloads the VADER (Valence Aware Dictionary and sEntiment Reasoner) lexicon, which is a
sentiment analysis tool.

Removing stopwords and preprocessing text:

stop_words = set(stopwords.words('english’)): It creates a set of stopwords from the English language. df1[Review Text] = df1['Review
Text'].apply(lambda x: '".join([word for word in x.split() if word.lower() not in stop_words])):

This line takes each review in the 'Review Text' column of the dataframe df1, splits it into individual words, checks if each word is not a
stopword, and joins the remaining words back into a sentence. This process removes stopwords from each review.

Performing sentiment analysis using VADER:

https://colab.research.google.com/drive/19bjlkfe ASUPuRMIo3ZgX-St5crQFBNMg#scrollTo=DHs2LEylEaEU &printMode=true 18/29



13/06/2023, 17:28 Women clothes.ipynb - Colaboratory

sid = SentimentintensityAnalyzer(): It creates an instance of the SentimentintensityAnalyzer class, which is a sentiment analysis tool provided
by NLTK.

df1['sentiment_score'] = df1['Review Text'].apply(lambda x: sid.polarity_scores(x)['compound’]):
This line applies sentiment analysis to each review in the 'Review Text' column.

The polarity_scores() method of the SentimentintensityAnalyzer calculates the sentiment polarity scores (positive, negative, and neutral) for
each review.

Here, we extract the '‘compound' score, which represents the overall sentiment intensity.

Classifying sentiments:

df1['sentiment] = df1['sentiment_score'].apply(lambda x: 'positive' if x > 0 else 'negative' if x < 0 else 'neutral’):

This line classifies the sentiment based on the sentiment score obtained from VADER. If the score is greater than 0, it is labeled as 'positive, if it
is less than 0, it is labeled as 'negative, and if it is exactly 0, it is labeled as 'neutral'.

Printing the results:

print(df1[[Review Text', 'sentiment]]): This line prints the 'Review Text' and 'sentiment’ columns from the dataframe df1, which now contains the
preprocessed reviews and their corresponding sentiment labels.

~ Product Performance Comparison:

Group the data by product and calculate average ratings for each product. Sort the products based on their average ratings to identify the top-
performing and bottom-performing products. Visualize the ratings distribution using histograms or box plots.

By dividing the sentiment counts by the total number of reviews and multiplying by 100, you obtain the percentage of each sentiment category
relative to all the possible reviews. The updated bar plot will then display the sentiment distribution as percentages instead of raw counts.

sentiment_counts = dfl['sentiment'].value_counts()
total_reviews = sentiment_counts.sum()

# Calculate the percentages
sentiment_percentages = (sentiment_counts / total_reviews) * 100

# Create a DataFrame for the plot

data = {
'Sentiment': sentiment_percentages.index,
'Percentage’': sentiment percentages.values

}
df_plot = pd.DataFrame(data)

# Create the bar plot using Plotly Express

fig = px.bar(df_plot, x='Sentiment', y='Percentage', title='Sentiment Distribution’,
labels={'Sentiment': 'Sentiment', 'Percentage': 'Percentage'},
color='Sentiment')

# Display the plot
fig.show()
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Sentiment Distribution

80

A positivity rate of more than 90% is observed.

. |
product_ratings = dfl.groupby('Class Name')['Rating'].mean()

# Sort products based on average ratings
sorted_products = product_ratings.sort values(ascending=False)

# Print top-performing and bottom-performing products
print("Top-performing products:")
print(sorted_products.head())

print("\nBottom-performing products:")
print(sorted_products.tail())

# Visualize ratings distribution
plt.figure(figsize=(8, 6))

plt.hist(dfl[ 'Rating'], bins=5, alpha=0.7)
plt.title('Ratings Distribution')
plt.xlabel('Rating')

plt.ylabel('Count')

plt.show()

Top-performing products:
Class Name

Jeans 4.356764
Jackets 4.322957
Outerwear 4.317647
Intimates 4.298969
Layering 4.295082

Name: Rating, dtype: floaté64

Bottom-performing products:
Class Name

Knits 4.126728
Legwear 4.069767
Casual bottoms 4.000000
Chemises 4.000000
Trend 3.895349

Name: Rating, dtype: floaté64
Ratings Distribution
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This code is focused on analyzing the ratings of different products. Let's break it down step by step:
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~ Grouping ratings by product ID and calculating average ratings:

product_ratings = df1.groupby('Clothing ID")['Rating].mean(): This line groups the ratings in the 'Rating' column of the dataframe df1 by the
product ID in the 'Clothing ID' column. It then calculates the mean rating for each product.

Sorting products based on average ratings:

sorted_products = product_ratings.sort_values(ascending=False): This line sorts the products based on their average ratings in descending
order. The sort_values() method is used on the product_ratings series, and the ascending=False parameter ensures the highest-rated products
are at the top.

Printing the top-performing and bottom-performing products:

print("Top-performing products:"): This line prints a header indicating the list of top-performing products. print(sorted_products.head()): This
line prints the first few rows (by default, five rows) of the sorted_products series, which contains the top-rated products.

print("\nBottom-performing products:"):

This line prints a header indicating the list of bottom-performing products.

print(sorted_products.tail()):

This line prints the last few rows (by default, five rows) of the sorted_products series, which contains the lowest-rated products.

Visualizing the ratings distribution:

plt.figure(figsize=(8, 6)): This line creates a figure object with a specified size (8 inches by 6 inches) for the plot. plt.hist(df1['Rating], bins=5,
alpha=0.7): This line plots a histogram of the 'Rating' column from the dataframe df1. The 'Rating' column contains the individual ratings given
by customers. The bins=5 parameter sets the number of bins (or bars) in the histogram to five, representing the rating scale. The alpha=0.7
parameter controls the transparency of the bars.

plt.title('Ratings Distribution’):

This line sets the title of the plot as 'Ratings Distribution'.

plt.xlabel('Rating’): This line sets the label for the x-axis as 'Rating'. plt.ylabel('Count’): This line sets the label for the y-axis as 'Count'. plt.show():
This line displays the plot.
Overall, the code calculates the average ratings for different products, sorts them to find the top and bottom performers, and visualizes the

distribution of ratings using a histogram. It provides insights into product performance and allows you to see the overall distribution of ratings.

product_ratings = dfl.groupby('Class Name')['Rating'].mean()

# Sort products based on average ratings
sorted_products = product_ratings.sort_values(ascending=False)

# Create a histogram using Plotly Express
fig = px.histogram(dfl, x='Rating', nbins=5, title='Ratings Distribution',

labels={'Rating': 'Rating', 'count': 'Count'})

# Display the plot
fig.show()
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Ratings Distribution

12k I

~ Customer Segmentation:

Identify key features to use for customer segmentation (e.g., ratings, review text, purchase frequency).
Use clustering algorithms (e.g., K-means, DBSCAN) to segment customers based on these features.
Analyze the characteristics of each customer segment, such as their average ratings, purchase patterns, and product preferences.

Visualize the customer segments using scatter plots or parallel coordinate plots. For this example, let's assume we'll use ratings and review
length as features for customer segmentation.
N

dfl[ 'Review Text'].head()

Absolutely wonderful - silky sexy comfortable
Love dress! sooo pretty. happened find store,
high hopes dress really wanted work me. initia...
love, love, love jumpsuit. fun, flirty, fabulo...
shirt flattering due adjustable front tie. per...
Name: Review Text, dtype: object

= W e o

from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

# Prepare features for clustering

features = dfl[['Rating', 'Positive Feedback Count', 'Age']] # Assuming 'review_length' is a column containing the length of
scaler = StandardScaler()

scaled_features = scaler.fit_transform(features)

# Perform K-means clustering

kmeans = KMeans(n_clusters=3, n_init=10, random state=42)

dfl['cluster'] = kmeans.fit_predict(scaled_features)

# Analyze characteristics of each customer segment
segment_characteristics = dfl.groupby('cluster')[[ 'Rating', 'Review Text']]

This code demonstrates the use of the K-means clustering algorithm to group customers into different segments based on their ratings,
positive feedback count, and age. Let's break it down step by step:

~ Importing the necessary modules:

from sklearn.cluster import KMeans: This line imports the KMeans class from the scikit-learn library, which provides various machine learning
algorithms, including the K-means clustering algorithm.

from sklearn.preprocessing import StandardScaler: This line imports the StandardScaler class from scikit-learn, which is used for standardizing
the features before clustering.

Preparing features for clustering:

features = df1[['Rating’, 'Positive Feedback Count', 'Age’]]: This line creates a subset of the dataframe df1, containing the columns 'Rating’,
'Positive Feedback Count', and 'Age’. These columns are used as features for clustering.

scaler = StandardScaler():

This line creates an instance of the StandardScaler class, which will be used to standardize (normalize) the features.

scaled_features = scaler.fit_transform(features):

This line scales the features by applying the fit_transform() method of the StandardScaler class to the features dataframe. This step is
important to ensure that all features have similar scales, as K-means is sensitive to the scale of the variables.
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Performing K-means clustering:

kmeans = KMeans(n_clusters=3, random_state=42): This line creates an instance of the KMeans class with n_clusters=3, which specifies the
desired number of clusters to be formed. The random_state=42 parameter ensures reproducibility of the results.

df1[cluster] = kmeans.fit_predict(scaled_features):

This line applies the K-means clustering algorithm to the scaled_features array. The fit_predict() method fits the model to the data and assigns
each data point to a cluster. The resulting cluster assignments are added as a new column named ‘cluster' to the df1 dataframe.

Analyzing characteristics of each customer segment:

segment_characteristics = df1.groupby('cluster’)[[Rating', 'Review Text]]: This line groups the dataframe df1 by the ‘cluster' column and selects
the 'Rating' and 'Review Text' columns. It creates a new dataframe that represents the characteristics of each customer segment.

The resulting segment_characteristics dataframe will allow you to analyze the average ratings and review texts of customers within each
segment. You can further explore and interpret the characteristics of each customer segment to gain insights and make informed business
decisions.

segment_characteristics = dfl.groupby('cluster')[['Rating', 'Positive Feedback Count']].mean()
print(segment_characteristics)

Rating Positive Feedback Count

cluster

0 4.719686 1.749890
1 2.390350 4.151473
2 4.646637 2.638756

Double-click (or enter) to edit

plt.figure(figsize=(8, 6))

plt.scatter(dfl[ 'Rating'], dfl['Positive Feedback Count'], c=dfl[ 'cluster'], cmap='viridis')
plt.title('Customer Segmentation')

plt.xlabel('Rating')

plt.ylabel('Positive Feedback Count')

plt.show()
Customer Segmentation
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# Create the scatter plot using Plotly Express
fig = px.scatter(dfl, x='Rating', y='Positive Feedback Count', color='cluster', title='Customer Segmentation',
labels={'Rating': 'Rating', 'Positive Feedback Count': 'Positive Feedback Count'})

# Display the plot
fig.show()
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~ Insights and Recommendations:

Summarize the findings from the sentiment analysis, product performance comparison, and customer segmentation.

# Sentiment Analysis

sentiment_summary = dfl['sentiment'].value_counts()

print("Sentiment Summary:")
print(sentiment_summary)

# Product Performance Comparison
top performing products = sorted products.head(5)

bottom_performing_ products = sorted_products.tail(5)

print("\nTop-performing products:")
print(top_performing products)
print("\nBottom-performing products:")
print(bottom performing products)

# Customer Segmentation
print("\nSegment Characteristics:")

print(segment_characteristics)

Sentiment Summary:

positive 21857
neutral 1001
negative 628

Name: sentiment, dtype: int64

Top-performing products:
Class Name
Casual bottoms 4.500000

Layering 4.376712
Jeans 4.360942
Lounge 4.301013
Jackets 4.295455

Name: Rating, dtype: floaté64

Bottom-performing products:
Class Name

Knits 4.161677
Blouses 4.154020
Dresses 4.152692
Chemises 4.000000
Trend 3.815126

Name: Rating, dtype: floaté64

Segment Characteristics:
Rating Positive Feedback Count

cluster

0 4.719686 1.749890
1 2.390350 4.151473
2 4.646637 2.638756

# Sentiment Summary
plt.figure(figsize=(8, 6))
sentiments = sentiment_ summary.index
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counts = sentiment_summary.values
plt.bar(sentiments, counts)
plt.xlabel('Sentiment')
plt.ylabel( 'Count')
plt.title('Sentiment Summary')

plt.show()
Sentiment Summary
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# Visualize top-performing products

plt.figure(figsize=(10, 6))

plt.bar(top_performing products.index, top_performing products.values)
plt.xlabel('Product')

plt.ylabel('Performance')

plt.title('Top-performing Products')

plt.xticks(rotation=45)

plt.show()

# Visualize bottom-performing products

plt.figure(figsize=(10, 6))

plt.bar(bottom performing_ products.index, bottom performing_ products.values)
plt.xlabel( 'Product')

plt.ylabel('Performance')

plt.title('Bottom-performing Products')

plt.xticks(rotation=45)

plt.show()
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Top-performing Products

4 -

3 -
L¥)
]
c
[4+]
E
=]
k=
& 27

l -

0 -

o ]
& e & N 3,
%
o
C?
Product

Bottom-performing Products

4-0___—

# Create DataFrames for the plots
top_performing products_df = pd.DataFrame({'Product': top_performing products.index, 'Performance': top performing products.ve
bottom performing products_df = pd.DataFrame({'Product': bottom performing products.index, 'Performance': bottom_performing pr

# Create the bar plot for top-performing products using Plotly Express
fig top = px.bar(top_performing products_df, x='Product', y='Performance', title='Top-performing Products',
labels={'Product': 'Product', 'Performance': 'Performance'})

# Create the bar plot for bottom-performing products using Plotly Express
fig bottom = px.bar(bottom performing products_df, x='Product', y='Performance', title='Bottom-performing Products',
labels={'Product': 'Product', 'Performance': 'Performance'})

# Display the plots

fig_top.show()
fig bottom.show()
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Top-performing Products
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# Segment Characteristics
segment_characteristics.plot(kind="bar', figsize=(10, 6))
plt.xlabel('Cluster')

plt.ylabel('vValue')

plt.title('Segment Characteristics')
plt.xticks(rotation=0)

plt.legend(["Rating"”, "Positive Feedback Count"])
plt.show()
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Based on the analysis conducted, here's a sample summary of the findings and recommendations:

~ Sentiment Analysis:
The sentiment analysis revealed that the majority of customer reviews were positive, indicating overall satisfaction with the products and
services.

The sentiment distribution showed that 70% of the reviews were positive, 25% were neutral, and only 5% were negative. Product Performance
Comparison:

The top-performing products based on average ratings were Product A, Product B, and Product C.

The bottom-performing products based on average ratings were Product X, Product Y, and Product Z.
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The ratings distribution showed that the majority of products received ratings between 3.5 and 4.5, indicating a generally positive customer
sentiment.

Customer Segmentation:

Three customer segments were identified based on their ratings and review text: "Positive," "Negative," and "Neutral"
The "Positive" segment consisted of customers who gave high ratings and wrote longer reviews, indicating their strong satisfaction.
The "Negative" segment had negative ratings and average reviews.

The "Neutral " segment had neither of the positive revies and negative reviews, suggesting a neutral satisfaction levels.

Insights and Recommendations:

Based on the analysis, here are the insights and recommendations to improve customer satisfaction:

Strengthen Positive Sentiment:

1. Leverage the positive sentiment expressed by the majority of customers to reinforce their satisfaction.
2. Highlight positive reviews and testimonials on the company's website, social media channels, and marketing materials.

3. Encourage satisfied customers to leave reviews and share their positive experiences.

Address Negative Sentiment:

1. Pay attention to the small percentage of negative reviews and identify the main pain points or issues raised by customers.
2. Promptly address and resolve customer complaints or concerns to mitigate any negative impact on overall satisfaction.

3. Implement measures to proactively gather feedback and address customer issues before they escalate.

Focus on Product Improvement:

1. Prioritize efforts to enhance the performance of the bottom-performing products (Knits, Blouses, and Dresses).
2. Analyze customer feedback and ratings specifically related to these products to identify areas for improvement.
3. Consider product enhancements, quality control measures, or additional customer support to address any identified shortcomings.

4. Need to change the neutral to positives through implementation of above features

Tailor Communication and Support:

1. Customize communication and support strategies for different customer segments.
2. Provide personalized recommendations, offers, and incentives to highly satisfied customers to strengthen loyalty.

3. Engage with less satisfied customers to understand their concerns and offer solutions or alternatives to address their needs.

Continuous Monitoring and Analysis:

1. Maintain an ongoing monitoring process to track customer sentiment and satisfaction.
2. Regularly analyze new customer reviews and ratings to identify emerging trends and address any evolving issues promptly.

3. Iterate on the analysis periodically to ensure the effectiveness of implemented changes and adapt strategies accordingly.

These recommendations aim to enhance overall customer satisfaction, address specific pain points, and promote continuous improvement
based on the insights gained from the analysis.

~ The monitoring and iteration phase.

In this phase, we'll assume that changes have been implemented based on the insights gained from the initial analysis. We'll monitor customer
reviews and ratings to track the impact of the changes. Here's an example of how you can approach this phase:

Monitoring:

1. Retrieve new customer reviews and ratings data.
2. Preprocess the new data by applying the same cleaning steps as before (e.g., removing stopwords, punctuation, and special characters).
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3. Apply the sentiment analysis algorithm to classify the new reviews into positive, negative, or neutral sentiments.

4. Calculate the sentiment scores and sentiments for the new data.

Assume you have a new dataset for monitoring named 'df_monitoring'

df_monitoring['clean_review'] = df_monitoring['review_text].apply(lambda x: " ".join([word for word in x.split() if word.lower() not in stop_words]))
df_monitoring['sentiment_score’] = df_monitoring['clean_review'].apply(lambda x: sid.polarity_scores(x)[compoundT)

df_monitoring['sentiment’] = df_monitoring['sentiment_score].apply(lambda x: 'positive' if x > 0 else 'negative' if x < 0 else 'neutral’)

Analyze the sentiment distribution of the new data and compare it with the initial
analysis.

sentiment_counts_monitoring = df_monitoring['sentiment].value_counts()

Compare sentiment distribution with initial analysis

initial_sentiment_counts = df1['sentiment].value_counts()
print("Initial Sentiment Distribution:") print(initial_sentiment_counts)

print("\nMonitoring Sentiment Distribution:") print(sentiment_counts_monitoring)

Iteration:

Compare the sentiment distribution of the new data with the initial analysis to identify any significant changes or trends. Evaluate the impact of
the implemented changes on customer sentiment and satisfaction.

Identify any new areas of concern or improvement based on the monitoring results.

If necessary, update the analysis, recommendations, and strategies accordingly.

By monitoring and iterating on the analysis, you can track the changes in customer sentiment and ensure that the implemented changes are
having the desired effect. This iterative process allows for continuous improvement and adaptation to evolving customer needs and
preferences.
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